A LIBS/Raman System for Planetary Surface Measurement, Phase II

Completed Technology Project (2012 - 2015)

Project Introduction

For lightweight and power-efficient instruments that enable elemental and/or mineralogy analysis, Q-Peak proposes to develop a compact, robust, and efficient instrument capable of performing imaging spectroscopy, Laser-Raman Spectroscopy (LRS) and Laser Induced Breakdown Spectroscopy (LIBS). The main advantage in using these techniques for planetary science is the ability to rapidly collect a wealth of chemical information, by simply directing a laser beam on remote targets of interest. No sample preparation is necessary. As an important component of the Raman/LIBS instrument in Phase I, we developed, built and tested a 1.5 cubic-inch, Q-switched, solid state laser fitted with commercial, off-the-shelf optical components. The laser produced ~1 mJ, < 2 ns-duration pulses at 523-nm wavelength and was used to analyze a norite sample by means of Raman/LIBS techniques. In Phase II we propose to further miniaturize and ruggedize the Phase I laser to a size of < 1 cubic inch. We will scale up the energy-per-pulse up to 2 mJ and test the laser in a wide range of environments such as vibration, vacuum and temperature. We will design and test the optics in a CHAMP instrument modified to accommodate the compact laser. The TRL of the laser will be 6 at the conclusion of the effort.

Primary U.S. Work Locations and Key Partners

A LIBS/Raman System for Planetary Surface Measurement

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	3
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

A LIBS/Raman System for Planetary Surface Measurement, Phase II

Completed Technology Project (2012 - 2015)

Organizations Performing Work	Role	Туре	Location
Q-Peak, Inc.	Lead Organization	Industry	Bedford, Massachusetts
Goddard Space Flight Center(GSFC)	Supporting Organization	NASA Center	Greenbelt, Maryland

Primary U.S. Work Locations		
Maryland	Massachusetts	

Project Transitions

April 2012: Project Start

January 2015: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/137390)

Images

Project Image

A LIBS/Raman System for Planetary Surface Measurement (https://techport.nasa.gov/imag e/129977)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Q-Peak, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Bhabana Pati

Co-Investigator:

Bhabana Pati

Small Business Innovation Research/Small Business Tech Transfer

A LIBS/Raman System for Planetary Surface Measurement, Phase II

Completed Technology Project (2012 - 2015)

Technology Areas

Primary:

- TX08 Sensors and Instruments
 - └─ TX08.1 Remote Sensing Instruments/Sensors
 └─ TX08.1.5 Lasers

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

